Code to Parse Census County and Block Group data. Political piece here and here.
# Code to Parse Census County and Block Group data from https://www.census.gov/rdo/data/voting_age_population_by_citizenship_and_race_cvap.html
jpeg_create <- function() {
systime <- as.numeric(Sys.time())
# dev.new()
jpeg(filename = systime,
width = 1024, height = 768, units = "px", pointsize = 12,
quality = 100, bg = "white", res = NA, family = "", restoreConsole = TRUE,
type = c("windows"))
Sys.sleep(2)
}
setwd("C:/Politics/CVAP_CSV_Format_2008-2012_ACS")
BlockGr <- read.csv("BlockGr_WA_Whatcom.csv", header = TRUE,stringsAsFactors = FALSE)
Groups <- as.matrix(unique(BlockGr$LNTITLE))
Groups
[,1]
[1,] "Total"
[2,] "Not Hispanic or Latino"
[3,] "American Indian or Alaska Native Alone"
[4,] "Asian Alone"
[5,] "Black or African American Alone"
[6,] "Native Hawaiian or Other Pacific Islander Alone"
[7,] "White Alone"
[8,] "American Indian or Alaska Native and White"
[9,] "Asian and White"
[10,] "Black or African American and White"
[11,] "American Indian or Alaska Native and Black or African American"
[12,] "Remainder of Two or More Race Responses"
[13,] "Hispanic or Latino"
for(i in Groups) {print(i)}
[1] "Total"
[1] "Not Hispanic or Latino"
[1] "American Indian or Alaska Native Alone"
[1] "Asian Alone"
[1] "Black or African American Alone"
[1] "Native Hawaiian or Other Pacific Islander Alone"
[1] "White Alone"
[1] "American Indian or Alaska Native and White"
[1] "Asian and White"
[1] "Black or African American and White"
[1] "American Indian or Alaska Native and Black or African American"
[1] "Remainder of Two or More Race Responses"
[1] "Hispanic or Latino"
for(i in Groups) {sum(subset(BlockGr,LNTITLE==i,select=CIT_EST))}
for(i in Groups) {print(sum(subset(BlockGr,LNTITLE==i,select=CIT_EST)))}
[1] 190180
[1] 178280
[1] 5062
[1] 5535
[1] 1681
[1] 372
[1] 160085
[1] 1841
[1] 1855
[1] 949
[1] 29
[1] 847
[1] 11928
for(i in Groups) {print(sum(subset(BlockGr,LNTITLE==i,select=CVAP_EST)))}
[1] 149235
[1] 142995
[1] 3654
[1] 4152
[1] 1248
[1] 372
[1] 130320
[1] 1255
[1] 1139
[1] 439
[1] 14
[1] 396
[1] 6255
setwd("C:/Politics/CVAP_CSV_Format_2008-2012_ACS")
BlockGr <- read.csv("BlockGr_WA_Whatcom.csv", header = TRUE,stringsAsFactors = FALSE)
t1 <- NULL
t2 <- NULL
Groups <- as.matrix(unique(BlockGr$LNTITLE))
for(i in Groups) {t1 <- rbind(sum(subset(BlockGr,LNTITLE==i,select=CIT_EST)),t1)}
for(i in Groups) {t2 <- rbind(sum(subset(BlockGr,LNTITLE==i,select=CVAP_EST)),t2)}
t3 <- data.frame(cbind(rev(Groups),t1,t2),stringsAsFactors = FALSE)
colnames(t3) <- c("Race.Ethnicity","CIT_EST","CVAP_EST")
t4 <- data.frame(t3,"CIT.CVAP.DIFF"=(as.numeric(t3$CIT_EST) - as.numeric(t3$CVAP_EST)),"CVAP.CIT.PCT"=(as.numeric(t3$CVAP_EST) / as.numeric(t3$CIT_EST)))
t4$CIT_EST <- as.numeric(t4$CIT_EST)
t4$CVAP_EST <- as.numeric(t4$CVAP_EST)
arrange(t4,desc(CIT_EST))
Race.Ethnicity CIT_EST CVAP_EST CIT.CVAP.DIFF CVAP.CIT.PCT
1 Total 190180 149235 40945 0.7847040
2 Not Hispanic or Latino 178280 142995 35285 0.8020810
3 White Alone 160085 130320 29765 0.8140675
4 Hispanic or Latino 11928 6255 5673 0.5243964
5 Asian Alone 5535 4152 1383 0.7501355
6 American Indian or Alaska Native Alone 5062 3654 1408 0.7218491
7 Asian and White 1855 1139 716 0.6140162
8 American Indian or Alaska Native and White 1841 1255 586 0.6816947
9 Black or African American Alone 1681 1248 433 0.7424152
10 Black or African American and White 949 439 510 0.4625922
11 Remainder of Two or More Race Responses 847 396 451 0.4675325
12 Native Hawaiian or Other Pacific Islander Alone 372 372 0 1.0000000
13 American Indian or Alaska Native and Black or African American 29 14 15 0.4827586
library(sqldf)
# Block Group Post
groups <- noquote(sQuote(unique(BlockGr$LNTITLE)))
sqldf("Select GEONAME,GEOID,LNTITLE,Sum(CIT_EST) AS SUMCIT,Sum(CVAP_EST) AS SUMCVAP from BlockGr where LNTITLE = 'Total' Group By GEONAME,GEOID,LNTITLE ORDER By SUMCIT DESC LIMIT 10")
# Block Group Post
setwd("C:/Politics/CVAP_CSV_Format_2008-2012_ACS")
BlockGr <- read.csv("BlockGr_WA_Whatcom.csv", header = TRUE,stringsAsFactors = FALSE)
x <- NULL
groups <- sort(rev(unique(BlockGr$LNTITLE)))
as.matrix(rev(groups))
for(i in groups) {x <- rbind(with((subset(BlockGr,LNTITLE == i)),(xtabs(CIT_EST ~ LNTITLE + GEOID ))),x)}
x <- as.data.frame(t(x)); colnames(x) <- c(1:13)
x <- data.frame(x, "Hispanic"=rowSums(x[c(6)]), "Hispanic.PCT"=rowSums(x[c(6)]) / rowSums(x[2]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$Hispanic,names.arg=c(1:nrow(x)),ylim=c(0,600),col=rgb(0,0,1,.95))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Hispanic or Latino' (in BLUE).",side=1,line=2)
mtext("Whatcom 2012 Census CVAP ACS (2010 Block Group Data).",side=1,line=3)
sqldf("Select GEONAME,GEOID,LNTITLE,Sum(CIT_EST) AS SUMCIT,Sum(CVAP_EST) AS SUMCVAP from BlockGr where LNTITLE = 'Hispanic or Latino' Group By GEONAME,GEOID,LNTITLE ORDER By SUMCIT DESC LIMIT 10")
x <- data.frame(x, NW=rowSums(x[c(3,5:13)]), "PCT_NW"=rowSums(x[c(3,5:13)]) / rowSums(x[2]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$NW,names.arg=c(1:nrow(x)),ylim=c(0,2200),col=rgb(1,0,0,.65))
mtext("Whatcom County Block Group distribution of citizens identifying with at least one race not 'White'(in Salmon).", side=1,line=2)
mtext("Whatcom 2012 Census CVAP ACS (2010 Block Group Data).",side=1,line=3)
sqldf("Select GEOID,GEONAME,Sum(CIT_EST) AS SUMCIT,Sum(CVAP_EST) AS SUMCVAP from BlockGr where (LNTITLE != 'Total') AND (LNTITLE != 'White Alone') AND (LNTITLE != 'Not Hispanic or Latino') Group By GEOID,GEONAME having (SUM(CIT_EST) != 0) or (SUM(CVAP_EST) != 0) ORDER By SUMCIT DESC LIMIT 10")
# Block Group Post ; all four together
setwd("C:/Politics/CVAP_CSV_Format_2008-2012_ACS")
BlockGr <- read.csv("BlockGr_WA_Whatcom.csv", header = TRUE,stringsAsFactors = FALSE)
x <- NULL
groups <- sort(rev(unique(BlockGr$LNTITLE)))
as.matrix(rev(groups))
for(i in groups) {x <- rbind(with((subset(BlockGr,LNTITLE == i)),(xtabs(CIT_EST ~ LNTITLE + GEOID ))),x)}
x <- as.data.frame(t(x)); colnames(x) <- c(1:13)
x <- data.frame(x, "Hispanic"=rowSums(x[c(6)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$Hispanic,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(1,0,0,.95))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Hispanic or Latino' (in RED).",side=1,line=4)
par(new=T)
x <- data.frame(x, "NotWhite"=rowSums(x[c(3,5:13)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$NotWhite,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(1,0,1,.65))
mtext("Whatcom County Block Group distribution of citizens identifying with at least one race not 'White'(in PINK).", side=1,line=3)
par(new=T)
x <- data.frame(x,"White"=rowSums(x[c(1)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$White,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(1,0,0,.35))
mtext("Whatcom County Block Group distribution of citizens identifying as 'White'(in SALMON).", side=1,line=2)
par(new=T)
x <- data.frame(x, "AllCitizens"=rowSums(x[c(2)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$AllCitizens,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(.1,0,0,.15))
mtext("Whatcom 2012 Census CVAP ACS Overlay (not stacked).",side=3,line=3)
mtext("Whatcom County Block Group distribution of citizens (in GREY).",side=3,line=2)
par(new=F)
# all four together Cumulative Distribution
x <- data.frame(x, "Hispanic"=rowSums(x[c(6)]))
x <- x[with(x,order(Hispanic,decreasing=TRUE)),]
barplot(x$X6,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(0,0,1,.95))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Hispanic or Latino' (in RED).",side=1,line=4)
par(new=T)
x <- data.frame(x, "NotWhite"=rowSums(x[c(3,5:13)]))
x <- x[with(x,order(NotWhite,decreasing=TRUE)),]
barplot(x$NotWhite,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(1,0,0,.65))
mtext("Whatcom County Block Group distribution of citizens identifying with at least one race not 'White'(in ORANGE).", side=1,line=3)
par(new=T)
x <- data.frame(x,"White"=rowSums(x[c(1)]))
x <- x[with(x,order(White,decreasing=TRUE)),]
barplot(x$X1,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(1,0,0,.45))
mtext("Whatcom County Block Group distribution of citizens identifying as 'White'(in SALMON).", side=1,line=2)
par(new=T)
x <- data.frame(x, "AllCitizens"=rowSums(x[c(2)]))
x <- x[with(x,order("AllCitizens",decreasing=TRUE)),]
barplot(x$X2,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(.1,0,0,.25))
mtext("Whatcom 2012 Census CVAP ACS Overlay (not stacked).",side=3,line=3)
mtext("Whatcom County Block Group distribution of citizens (in GREY).",side=3,line=2)
par(new=F)
# all five together "Alone" together plus "Not White Alone"
rev(groups)
setwd("C:/Politics/CVAP_CSV_Format_2008-2012_ACS")
BlockGr <- read.csv("BlockGr_WA_Whatcom.csv", header = TRUE,stringsAsFactors = FALSE)
x <- NULL
groups <- sort(rev(unique(BlockGr$LNTITLE)))
as.matrix(rev(groups))
for(i in groups) {x <- rbind(with((subset(BlockGr,LNTITLE == i)),(xtabs(CIT_EST ~ LNTITLE + GEOID ))),x)}
x <- as.data.frame(t(x)); colnames(x) <- c(1:13)
x <- data.frame(x, "HispanicLatino"=rowSums(x[c(6)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$HispanicLatino,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(1,0,0,.95))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Hispanic or Latino' (in RED .95).",side=3,line=1)
par(new=T)
x <- data.frame(x, "AsianAlone"=rowSums(x[c(10)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$AsianAlone,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(1,1,0,.75))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Asian Alone' (in RED,GREEN .75).", side=1,line=2)
par(new=T)
x <- data.frame(x,"NativeAlone"=rowSums(x[13]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$NativeAlone,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(0,1,1,.55))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Native American Alone' (in GREEN,BLUE .55).", side=1,line=3)
par(new=T)
x <- data.frame(x,"BlackAlone"=rowSums(x[8]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$BlackAlone,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(0,0,1,.35))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Black Alone' (in BLUE .35).", side=1,line=4)
par(new=T)
x <- data.frame(x, "NotWhite"=rowSums(x[c(3,5:13)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$NotWhite,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(0,0,0,.15))
mtext("Whatcom 2012 Census CVAP ACS Overlay (transparent not stacked). Block Groups in RGB/Alpha ordered by descending All Citizen Totals.",side=3,line=3)
mtext("Whatcom County Block Group distribution of citizens identifying as 'Not White Alone' (in WHITE .15).",side=3,line=2)
par(new=F)
# Testing with add=TRUE
setwd("C:/Politics/CVAP_CSV_Format_2008-2012_ACS")
BlockGr <- read.csv("BlockGr_WA_Whatcom.csv", header = TRUE,stringsAsFactors = FALSE)
x <- NULL
groups <- sort(rev(unique(BlockGr$LNTITLE)))
as.matrix(rev(groups))
for(i in groups) {x <- rbind(with((subset(BlockGr,LNTITLE == i)),(xtabs(CIT_EST ~ LNTITLE + GEOID ))),x)}
x <- as.data.frame(t(x)); colnames(x) <- c(1:13)
plot.new()
x <- data.frame(x, "HispanicLatino"=rowSums(x[c(6)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$HispanicLatino,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(1,0,0,.95))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Hispanic or Latino' (in RED .95).",side=3,line=1)
x <- data.frame(x, "AsianAlone"=rowSums(x[c(10)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$AsianAlone,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(1,1,0,.75),add=TRUE)
mtext("Whatcom County Block Group distribution of citizens identifying as 'Asian Alone' (in RED,GREEN .75).", side=1,line=2)
x <- data.frame(x,"NAAlone"=rowSums(x[13]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$NAAlone,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(0,1,1,.55),add=TRUE)
mtext("Whatcom County Block Group distribution of citizens identifying as 'Native American Alone' (in GREEN,BLUE .55).", side=1,line=3)
x <- data.frame(x,"BlackAlone"=rowSums(x[8]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$BlackAlone,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(0,0,1,.35),add=TRUE)
mtext("Whatcom County Block Group distribution of citizens identifying as 'Black Alone' (in BLUE .35).", side=1,line=4)
x <- data.frame(x, "NotWhite"=rowSums(x[c(3,5:13)]))
x <- x[with(x,order(X2,decreasing=TRUE)),]
barplot(x$NotWhite,names.arg=c(1:nrow(x)),ylim=c(0,2500),col=rgb(0,0,0,.15),add=TRUE)
mtext("Whatcom 2012 Census CVAP ACS Overlay (transparent not stacked). Block Groups in RGB/Alpha ordered by descending All Citizen Totals.",side=3,line=3)
mtext("Whatcom County Block Group distribution of citizens identifying as 'Not White Alone' (in WHITE .15).",side=3,line=2)
# Testing with add=TRUE
setwd("C:/Politics/CVAP_CSV_Format_2008-2012_ACS")
BlockGr <- read.csv("BlockGr_WA_Whatcom.csv", header = TRUE,stringsAsFactors = FALSE)
x <- NULL
groups <- sort(rev(unique(BlockGr$LNTITLE)))
as.matrix(rev(groups))
for(i in groups) {x <- rbind(with((subset(BlockGr,LNTITLE == i)),(xtabs(CIT_EST ~ LNTITLE + GEOID ))),x)}
x <- as.data.frame(t(x)); colnames(x) <- c(1:13)
x$GEOID <- gsub('15000US53073','',row.names(x))
plot.new()
jpeg_create()
x <- data.frame(x, "HispanicLatino"=rowSums(x[c(6)]))
x <- x[with(x,order(GEOID,decreasing=TRUE)),]
barplot(x$HispanicLatino,names.arg=c(1:nrow(x)),ylim=c(0,2000),col=rgb(1,0,0,.95))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Hispanic or Latino' (in RED .95).",side=3,line=1)
x <- data.frame(x, "AsianAlone"=rowSums(x[c(10)]))
x <- x[with(x,order(GEOID,decreasing=TRUE)),]
barplot(x$AsianAlone,names.arg=c(1:nrow(x)),ylim=c(0,2000),col=rgb(1,1,0,.75),add=TRUE)
mtext("Whatcom County Block Group distribution of citizens identifying as 'Asian Alone' (in RED,GREEN .75).", side=1,line=2)
x <- data.frame(x,"NAAlone"=rowSums(x[13]))
x <- x[with(x,order(GEOID,decreasing=TRUE)),]
barplot(x$NAAlone,names.arg=c(1:nrow(x)),ylim=c(0,2000),col=rgb(0,1,1,.55),add=TRUE)
mtext("Whatcom County Block Group distribution of citizens identifying as 'Native American Alone' (in GREEN,BLUE .55).", side=1,line=3)
x <- data.frame(x,"BlackAlone"=rowSums(x[8]))
x <- x[with(x,order(GEOID,decreasing=TRUE)),]
barplot(x$BlackAlone,names.arg=c(1:nrow(x)),ylim=c(0,2000),col=rgb(0,0,1,.35),add=TRUE)
mtext("Whatcom County Block Group distribution of citizens identifying as 'Black Alone' (in BLUE .35).", side=1,line=4)
x <- data.frame(x,"NoRaceAlone"=rowSums(x[c(3,7,9,11,12)]))
x <- x[with(x,order(GEOID,decreasing=TRUE)),]
barplot(x$NoRaceAlone,names.arg=c(1:nrow(x)),ylim=c(0,2000),col=rgb(0,0,0,.15),add=TRUE)
mtext("Whatcom County Block Group distribution of citizens identifying as 'No One Race Alone' (in WHITE .15).", side=3,line=2)
mtext("Whatcom 2012 Census CVAP ACS Overlay (transparent not stacked). Block Groups in RGB/Alpha ordered by GEOID.",side=3,line=3)
graphics.off()
plot.new()
jpeg_create()
x <- data.frame(x, "NotWhite"=rowSums(x[c(3,5:13)]))
x <- x[with(x,order(GEOID,decreasing=TRUE)),]
barplot(x$NotWhite,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(0,0,0,.15))
mtext("Whatcom County Block Group distribution of citizens identifying as 'Not White' or 'Not White Alone' (in WHITE .15).",side=3,line=2)
x <- data.frame(x, "WhiteAlone"=rowSums(x[c(1)]))
x <- x[with(x,order(GEOID,decreasing=TRUE)),]
barplot(x$WhiteAlone,names.arg=c(1:nrow(x)),ylim=c(0,5500),col=rgb(0,0,0,.05),add=TRUE)
mtext("Whatcom 2012 Census CVAP ACS Overlay (transparent not stacked). Block Groups in RGB/Alpha ordered by GEOID.",side=3,line=3)
mtext("Whatcom County Block Group distribution of citizens identifying as 'White Alone' (in WHITE .05).",side=3,line=1)
library(lattice)
jpeg_create()
barchart(~HispanicLatino + AsianAlone + NAAlone + BlackAlone | GEOID,data=x,col=c("orange","yellow","red","black"))
jpeg_create()
barchart(~HispanicLatino + AsianAlone + BlackAlone | GEOID,data=x,col=c("orange","yellow","black"))
jpeg_create()
barchart(~HispanicLatino + NAAlone | GEOID,data=x,col=c("orange","red"))
jpeg_create()
barchart(~HispanicLatino | GEOID,data=x,col=c("orange"))
jpeg_create()
barchart(~AsianAlone | GEOID,data=x,col=c("yellow"))
jpeg_create()
barchart(~NAAlone | GEOID,data=x,col=c("red"))
jpeg_create()
barchart(~BlackAlone | GEOID,data=x,col=c("black"))
jpeg_create()
barchart(~WhiteAlone + NotWhite | GEOID,data=x,col=c(rgb(0,0,0,.05),rgb(0,0,0,.15)))
graphics.off()
# mosaicplot of NW not working
x <- table(x, NW=rowSums(x[c(3,5:13)]), "PCT_NW"=rowSums(x[c(3,5:13)]) / rowSums(x[2]))
x <- x[with(x,order(NW,decreasing=TRUE)),]
mosaicplot(x$NW,names.arg=c(1:nrow(x)),col=rgb(1,0,0,.50))
mtext("Whatcom County Block Group distribution of citizens identifying with at least one race not 'White'.", side=1,line=3)
rev(groups)
[1] "White Alone"
[2] "Total"
[3] "Remainder of Two or More Race Responses"
[4] "Not Hispanic or Latino"
[5] "Native Hawaiian or Other Pacific Islander Alone"
[6] "Hispanic or Latino"
[7] "Black or African American and White"
[8] "Black or African American Alone"
[9] "Asian and White"
[10] "Asian Alone"
[11] "American Indian or Alaska Native and White"
[12] "American Indian or Alaska Native and Black or African American"
[13] "American Indian or Alaska Native Alone"
colSums(x[2,1])
colSums(x[c(3,5:13)])
X3 X5 X6 X7 X8 X9 X10 X11 X12 X13
847 372 11928 949 1681 1855 5535 1841 29 5062
colSums(x[c(2,1)])
X2 X1
190180 160085
sum(colSums(x[c(3,5:13)]))
[1] 30099
# From the 2012 ACS County File
jpeg_create <- function() {
systime <- as.numeric(Sys.time())
# dev.new()
jpeg(filename = systime,
width = 1024, height = 768, units = "px", pointsize = 12,
quality = 100, bg = "white", res = NA, family = "", restoreConsole = TRUE,
type = c("windows"))
Sys.sleep(2)
}
library(plyr)
library(sqldf)
library(lattice)
setwd("C:/Politics/CVAP_CSV_Format_2008-2012_ACS")
County <- read.csv("County.csv", header = TRUE,stringsAsFactors = FALSE)
CountyWA <- sqldf("Select * from County where GEONAME LIKE '%Washington'")
write.csv(subset(County, GEONAME == "Whatcom County, Washington"),"Whatcom.csv")
c1 <- read.csv("Whatcom.csv", header = TRUE,stringsAsFactors = FALSE)
arrange(c1,desc(CIT_EST))
c2 <- arrange(subset(CountyWA,LNTITLE=="Total",select=c(1,5:12)),desc(CIT_EST))
c3 <- arrange(subset(CountyWA,LNTITLE=="White Alone",select=c(1,5:12)),desc(CIT_EST))
c4 <- arrange(subset(CountyWA,LNTITLE=="Hispanic or Latino",select=c(1,5:12)),desc(CIT_EST))
c5 <- arrange(subset(CountyWA,LNTITLE=="Asian Alone",select=c(1,5:12)),desc(TOT_EST))
c6 <- arrange(subset(CountyWA,LNTITLE=="Black or African American Alone",select=c(1,5:12)),desc(CIT_EST))
c7 <- arrange(subset(CountyWA,LNTITLE=="American Indian or Alaska Native Alone",select=c(1,5:12)),desc(CIT_EST))
cX0 <- colSums(arrange(subset(CountyWA,LNTITLE=="Total",select=c(5:12)),desc(CIT_EST)))
#cx1
#cx2
unique(CountyWA$GEONAME)
cX1 <- sqldf("Select Distinct(GEONAME) AS COUNTIES,Sum(CIT_EST),Sum(CVAP_EST) from CountyWA where LNTITLE='Total' Group By COUNTIES")
cX2 <- sqldf("Select Distinct(LNTITLE) AS TITLE,Sum(CIT_EST),Sum(CVAP_EST) from CountyWA Group By TITLE")
cX3 <- sqldf("Select Distinct(GEONAME) As Counties,LNTITLE,Sum(CIT_EST),Sum(CVAP_EST) from CountyWA Group By COUNTIES,LNTITLE")
jpeg_create()
with(c2,(barplot(CIT_EST,horiz=TRUE,names.arg=strsplit(GEONAME,"County, Washington"),width=.9,las=1,xpd=TRUE,xlim=c(0,1900000),ylim=c(1,39),col=rgb(0,0,1,.75))))
par(new=T)
with(c2,(barplot(CVAP_EST,horiz=TRUE,width=.9,xlim=c(0,1900000),ylim=c(1,39),xlab="2012 ACS WA Counties : CIT_EST (blue) vs. CVAP_EST (red)",col=rgb(1,0,0,.75))))
mtext("Totals",side=3, line=1)
par(new=F)
jpeg_create()
with(c3,(barplot(CIT_EST,horiz=TRUE,names.arg=strsplit(GEONAME,"County, Washington"),width=.9,las=1,xpd=TRUE,xlim=c(0,1300000),ylim=c(1,39),col=rgb(0,0,1,.75))))
par(new=T)
with(c3,(barplot(CVAP_EST,horiz=TRUE,width=.9,xlim=c(0,1300000),ylim=c(1,39),xlab="2012 ACS WA Counties : CIT_EST (blue) vs. CVAP_EST (red)",col=rgb(1,0,0,.75))))
mtext("White Alone",side=3, line=1)
par(new=F)
jpeg_create()
with(c4,(barplot(CIT_EST,horiz=TRUE,names.arg=strsplit(GEONAME,"County, Washington"),width=.9,las=1,xpd=TRUE,xlim=c(0,120000),ylim=c(1,39),col=rgb(0,0,1,.75))))
par(new=T)
with(c4,(barplot(CVAP_EST,horiz=TRUE,width=.9,xlim=c(0,120000),ylim=c(1,39),xlab="2012 ACS WA Counties : CIT_EST (blue) vs. CVAP_EST (red)",col=rgb(1,0,0,.75))))
mtext("Hispanic or Latino",side=3, line=1)
par(new=F)
jpeg_create()
with(c5,(barplot(CIT_EST,horiz=TRUE,names.arg=strsplit(GEONAME,"County, Washington"),width=.9,las=1,xpd=TRUE,xlim=c(0,200000),ylim=c(1,39),col=rgb(0,0,1,.75))))
par(new=T)
with(c5,(barplot(CVAP_EST,horiz=TRUE,width=.9,xlim=c(0,200000),ylim=c(1,39),xlab="2012 ACS WA Counties : CIT_EST (blue) vs. CVAP_EST (red)",col=rgb(1,0,0,.75))))
mtext("Asian Alone",side=3, line=1)
par(new=F)
jpeg_create()
with(c6,(barplot(CIT_EST,horiz=TRUE,names.arg=strsplit(GEONAME,"County, Washington"),width=.9,las=1,xpd=TRUE,xlim=c(0,120000),ylim=c(1,39),col=rgb(0,0,1,.75))))
par(new=T)
with(c6,(barplot(CVAP_EST,horiz=TRUE,width=.9,xlim=c(0,120000),ylim=c(1,39),xlab="2012 ACS WA Counties : CIT_EST (blue) vs. CVAP_EST (red)",col=rgb(1,0,0,.75))))
mtext("Black or African American Alone",side=3, line=1)
par(new=F)
jpeg_create()
with(c7,(barplot(CIT_EST,horiz=TRUE,names.arg=strsplit(GEONAME,"County, Washington"),width=.9,las=1,xpd=TRUE,xlim=c(0,13000),ylim=c(1,39),col=rgb(0,0,1,.75))))
par(new=T)
with(c7,(barplot(CVAP_EST,horiz=TRUE,width=.9,xlim=c(0,13000),ylim=c(1,39),xlab="2012 ACS WA Counties : CIT_EST (blue) vs. CVAP_EST (red)",col=rgb(1,0,0,.75))))
mtext("American Indian or Alaska Native Alone",side=3, line=1)
par(new=F)
No comments:
Post a Comment